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Abstract
EXAFS (extended x-ray absorption fine structure), besides being a powerful
structural probe, can also give original information on local dynamics in solids.
EXAFS is peculiarly sensitive to the correlation of vibrational motion, both
parallel and perpendicular to the bond direction, and to anharmonicity. This
paper contains an introduction to the effects of thermal disorder on EXAFS of
crystals and to the data analysis based on the cumulant expansion. Cumulants
are easily connected to average local vibrational properties. Recently obtained
experimental results concerning the mean square relative displacement and
the thermal expansion in crystals confirm the potentialities of EXAFS as a
dynamical probe.

1. Introduction

The acronym EXAFS (extended x-ray absorption fine structure) refers to the oscillations of
the x-ray absorption coefficient of molecular and condensed systems, which are observed on
the high-energy side of an absorption edge [1, 2]. The origin of EXAFS is easily understood
on phenomenological grounds. When an x-ray photon of high enough energy is absorbed
by an atom, an electron is ejected from a core orbital and leaves the atom, but has a finite
probability of being back-scattered by other neighbouring atoms. The absorption coefficient
depends, to first order, on the dipole matrix element connecting the initial core state ψi and the
photoelectron final state ψf , which in turn is a superposition of the outgoing spherical wave
and the incoming back-scattered wave. The phase relationship between outgoing and incoming
waves depends on the product kR of photoelectron momentum and interatomic distance. The
variation of the phase relationship as a function of photon energy modulates the final-state
amplitude at the core site and thence the absorption coefficient. Consequently, the frequency
of EXAFS oscillations depends on interatomic distances, and their amplitude is proportional
to the number of neighbouring atoms.
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Two main peculiarities characterize EXAFS: (a) the selectivity as regards the atomic
species, which is achieved by tuning the x-ray energy to the corresponding absorption
edge; (b) the insensitivity to long-range order, due to the short photoelectron mean free
path. This last property implies similarity between EXAFS spectra of amorphous and
crystalline materials. In the last three decades EXAFS has developed into a powerful probe
of local structure around selected atomic species in complex and disordered systems, like
amorphous semiconductors, multicomponent oxide glasses, inorganic and biological catalysts,
and randomly distributed solid solutions [3, 4]. The structural information extracted from
EXAFS concerns the interatomic distance and coordination number of a few coordination
shells of the absorbing atom.

This basic structural information is influenced by thermal disorder, whose main effect is a
reduction of the amplitude of the EXAFS oscillations, analogous to the reduction of the peak
intensity in diffraction patterns of crystals. A more subtle effect concerns the phase of the
EXAFS oscillations. The study of these effects allows one to obtain original information not
only on the thermodynamical properties of structurally disordered solids, but also on the lattice
dynamics of crystals.

The peculiarities of EXAFS for dynamical studies are mainly based on the following
properties:

(a) owing to the high values of transferred momentum, EXAFS is generally more sensitive
than x-ray diffraction to disorder and in particular to anharmonicity;

(b) EXAFS is sensitive to the mean square relative displacement 〈�u2〉 of absorber and back-
scatterer atoms, which depends not only on the separate vibrational motion of the two
atoms, but also on their correlation.

The potentialities of EXAFS as a dynamical probe [5, 6] as well as the sensitivity to
anharmonicity [7] were pointed out quite early. However, after a few pioneering experimental
works, only occasional use has been made of EXAFS to study vibrational properties in solids.
Extended compilations of experimental results can be found in recent review papers [8, 9].
The development of theoretical work [10–12] and the increased accuracy of experimental
results [13] are now renewing interest in the subject: on the one hand, the careful treatment
of anharmonicity is giving new insights into the correlation and into local thermal expansion;
on the other, there is a growing awareness that the accuracy of structural parameters, like
interatomic distances, depends on an appropriate treatment of dynamical phenomena.

This paper is intended as an introduction to the use of EXAFS for dynamical studies.
Self-consistency and comprehensibility for non-specialists are sought rather than generality
and completeness. To this end, only crystalline systems are considered, the data analysis is
restricted to within the single-scattering approximation, and a phenomenological approach is
maintained throughout the paper. References to more exhaustive treatments are given anyway
for interested readers.

In section 2 the basic theory of EXAFS is outlined and the procedure of data analysis
based on the cumulant expansion, particularly suited for dynamical studies, is depicted. In
section 3 the general relations connecting EXAFS parameters to atomic thermal displacements
in the harmonic approximation are given, and a phenomenological approach to anharmonicity
is attempted. Section 4 is specifically dedicated to the mean square relative displacement
(MSRD): the sensitivity to correlation and the effects of anharmonicity are illustrated by
suitable examples. In section 5 some recent advances in the study of thermal expansion are
presented. Section 6 is dedicated to conclusions.
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2. The EXAFS spectroscopy

The EXAFS function (figure 1) is defined as

χ(k) = (µ − µ0)/µ0 (1)

where µ is the measured oscillating absorption coefficient and µ0 the smooth absorption
coefficient of an isolated atom. The EXAFS signal is conveniently expressed in (1) as a
function of the photoelectron wavenumber k:

k =
√
(2me/h̄

2)(h̄ω − Eb) (2)

where h̄ω is the x-ray photon energy and Eb the binding energy of the core electron.
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Figure 1. The EXAFS kχ(k) of germanium at 10 K (continuous line) and 300 K (dashed line).
The signal at 10 K is the superposition of the contributions from several coordination shells. When
temperature increases, EXAFS is damped; the damping is stronger for the outer shells, and the
signal appears less structured.

2.1. The basic mechanism of EXAFS

The quantitative interpretation of EXAFS relies on the quantum picture of two stationary
photoelectron spherical waves, the outgoing one and the back-scattered incoming one, whose
interference affects the x-ray absorption probability. Let us outline here just the main steps
leading to a parametrized formula for the EXAFS function (1) (more exhaustive treatments
can be found in [2–4, 14], and references therein).

The x-ray absorption coefficient depends on the probabilities of transition, Wfi , from the
initial state i to all the possible final states f :

µ(ω) ∝
∑
f

Wf i. (3)

The calculation of the transition probabilities is done within the framework of the time-
dependent perturbation theory, leading, to first order, to the golden rule

Wfi = (2π/h̄)
∣∣∣〈�i |ĤI |�f 〉

∣∣∣2
ρ(Ef ) (4)
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where |�i〉 and |�f 〉 are the initial and final states of the absorber atom, respectively, ρ(Ef )

is the density of final states, and ĤI is the interaction Hamiltonian.
By focusing on a transition involving only one selected core electron and truncating the

interaction Hamiltonian expansion to the electric dipole term, the absorption coefficient can
be expressed as

µ(ω) ∝ ∣∣〈ψi |η̂ · r|ψf 〉∣∣2
S2

0ρ(εf ) (5)

where now |ψi〉 and |ψf 〉 are one-electron states, and ρ(εf ) is the corresponding density of
final states; r is the electron position and η̂ the electric field polarization unit vector. The
many-body excitations competitive with the one-electron transition are taken into account by
the unitless term S2

0 (typically 0.6 to 0.9).
The initial state |ψi〉 in (5) is a localized core-electron wavefunction. If the atom is isolated,

the final state is an outgoing spherical wave, |ψ0
f 〉, and equation (5) gives the atomic absorption

coefficient µ0. For an atom embedded in a molecule or a condensed system, the final state is
instead the superposition of the outgoing spherical wave and the weak incoming waves due to
the scattering from neighbouring atoms: |ψ0

f + δψf 〉. If one considers only photoelectrons of
relatively high energy (typically higher than 30 to 50 eV), the final state can be calculated by
the scattering theory in the plane-wave approximation. Combining then µ and µ0 in (1), one
gets the final formula

χ(k) = (S2
0/k)

∑
s

Ns Im

{
fs(k) exp(2iδ1)

exp(−2Rs/λ)

R2
s

exp(2ikRs)

}
. (6)

In (6) the summation is over the few coordination shells of the absorber atom which give a
significant contribution to EXAFS; Rs and Ns are the interatomic distance and coordination
number, respectively, of the sth shell. The basic interference term is exp(2ikRs). λ is the photo-
electron mean free path (typically 6 to 10 Å), fs(k) is the complex back-scattering amplitude,
and δ1 is the phase-shift due to the potential of the absorber atom.

The EXAFS signal can extend to values of exchanged momentum 2k as high as 30 or
even 40 Å−1, depending on sample composition and temperature. Conversely, the simple
interpretation depicted in (6) cannot generally be utilized for 2k less than about 6 Å−1. Equ-
ation (6) is based on the hypothesis that the photoelectron undergoes only one scattering event
(single-scattering approximation); when multiple-scattering events cannot be neglected, more
elaborate interpretation schemes should be used [10, 12]. In some cases also the plane-wave
description of scattering fails, and a dependence on distance should be considered for the
back-scattering amplitude fs(k, R). In the following we will consider only cases for which
the single-scattering and plane-wave approximations are appropriate.

2.2. Effects of thermal disorder on EXAFS

Equation (6) refers to the unrealistic case of atoms frozen at their equilibrium positions.
Thermal disorder spreads atomic positions into three-dimensional distributions. The photo-
electron time of flight (∼10−16 s) is much shorter than the period of atomic vibrations
(∼10−13 s), so an EXAFS spectrum samples a one-dimensional distribution of instantaneous
interatomic distances r . For each coordination shell, equation (6) transforms into [15]

χs(k, T ) = (S2
0/k)Ns Im

[
fs(k) exp(2iδ1)

∫ ∞

0
ρ(r, T )

exp(−2r/λ)

r2
exp(2ikr) dr

]
. (7)

The function ρ(r, T ) represents the pair distribution of absorber–back-scatterer distances,
averaged over the coordination shell. It is referred to as the real distribution, while the
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r-dependent factors within (7) are globally referred to as the effective distribution:

P(r, λ, T ) = ρ(r, T ) exp(−2r/λ)/r2. (8)

The distribution ρ(r, T ) contains all structural and dynamical information in principle
available from EXAFS. The inversion of equation (7) to recover ρ(r, T ) from χ(k, T ) cannot
be done exactly, mainly because of the limited k-range of experimental spectra. Various
approximate solutions have been proposed for this problem; the one based on the cumulant
expansion is particularly appropriate for dynamical studies [15–17]. Basically, the structural
part of the EXAFS formula (7) can be expanded as a MacLaurin series in the wavenumber k:

ln
∫ ∞

0
P(r, λ, T ) exp(2ikr) dr =

∞∑
n=0

(2ik)nCn(T )/n! (9)

whereCn(T ) are the cumulants of the effective distributionP(r, λ, T ). Taking into account (9)
and readjusting fs(k) exp(2iδ1) = |fs(k)| exp(iφ), equation (7) is written in the more explicit
real form

χs(k, T ) = (S2
0/k)Ns |fs(k)| exp(C0 − 2k2C2 + 2k4C4/3 − · · ·)
× sin[2kC1 − 4k3C3/3 + · · · + φ(k)]. (10)

Odd and even cumulants determine the phase and amplitude of the EXAFS signal,
respectively. The cumulants have a simple physical interpretation. C0 depends on the normal-
ization of the effective distribution: exp(C0) � exp(−2C1/λ)/C

2
1 . C1 and C2 are the mean

value and the variance of the distribution, respectively. Higher-order cumulants are zero for
Gaussian distributions. C3 and higher-order odd cumulants depend on the asymmetry of the
distribution. C4 and higher-order even cumulants describe symmetric deviations from the
Gaussian shape.

For weak disorder only the first cumulants (C0, C1, and C2) are significant, the effective
distribution can be considered Gaussian, and equation (10) reduces to the frequently used
standard formula for EXAFS:

χs(k, T ) = (S2
0/k)Ns |fs(k)|exp(−2C1/λ)

C2
1

exp(−2k2C2) sin[2kC1 + φ(k)]. (11)

Here thermal disorder only broadens the Gaussian distribution, causing an exponential damping
of the EXAFS signal, which is measured by the EXAFS Debye–Waller factor exp(−2k2C2).

The standard formula (11) can safely be used only for low-temperature spectra, when
anharmonic contributions are negligible. When the Debye temperature is approached, an-
harmonic effects cannot in any case be neglected: the Gaussian approximation is no longer
valid, higher-order cumulants become important, and equation (10) should be used: thermal
disorder influences not only the variance of the distribution, but also its overall shape; odd
cumulants, related to asymmetry, modify also the phase of the EXAFS signal. When the
temperature grows further, a larger number of cumulants become significant, and eventually
the convergence interval of the cumulant series becomes shorter than the EXAFS range, so
not even equation (10) can be used safely [17]. Here we will consider only cases for which
equation (10) is applicable.

Equation (10) expresses EXAFS as a function of the cumulants Ci(T ) of the effective
distribution P(r, λ, T ), while one is interested in the corresponding cumulants C∗

i (T ) of the
real distribution ρ(r, T ).

The first cumulant (mean value) of the effective distribution is systematically smaller than
the first cumulant of the real distribution, as a consequence of the spherical nature of the
photoelectron wave and its limited mean free path [15]:

C1 = C∗
1 − (2C∗

2/C
∗
1 )(1 + C∗

1/λ). (12)
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The difference between the first cumulants cannot be neglected in highly accurate works
(see section 5). The difference between the second- and higher-order cumulants of the two
distributions [18] can however be neglected for not-too-disordered systems.

2.3. Measurement and data analysis

The ideal x-ray source for EXAFS is synchrotron radiation, owing to the intense continuous
spectrum and the intrinsic vertical collimation [19]. In direct transmission measurements the
x-ray energy is tuned by Bragg reflection from a pair of parallel crystals, and the beam intensity
is measured in front of and beyond the sample by two detectors, typically ionization chambers.
The sample is generally powdered, and its thickness is of the order of 10 µm. Other more
sophisticated detection schemes are used for particular cases (diluted samples, surface studies,
etc) [3]. For dynamical studies, measurements are made at different temperatures, which is
relatively simple and fast, since the sample is fixed and can be easily cooled or heated.

The first step of the data analysis consists in the extraction of the EXAFS function (1)
from the experimental absorption coefficient (figure 1). The contributions of the different
coordination shells are then singled out by Fourier filtering and separately analysed (figure 2).
If the ‘physical’ factors S2

0 , |fs(k)|, and φ(k) are known from theoretical calculations or from
suitable reference compounds, by fitting equation (10) to the experimental spectra one gets
the ‘structural’ parameters Ci(T ). In dynamical studies one often extracts the physical factors
from the lowest-temperature spectrum, taken as reference. In this way one gets the temperature
dependence�Ci(T ) = Ci(T )−Ci(T0) of cumulants relative to the low-temperature spectrum
(figure 3). To obtain absolute valuesCi(T ), when required, one fits the temperature dependence
�Ci(T ) using suitable models (see below). The alternative procedure of using calculated
physical parameters directly gives absolute values Ci(T ), whose accuracy however depends
critically on the soundness of assumptions and approximations of theoretical calculations.
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Figure 2. Fourier transforms of the EXAFS signal of germanium at 10 K (continuous line) and
300 K (dashed line). The peaks correspond to the contributions of different coordination shells
(the peak positions differ from the real distances as a consequence of the term φ(k) in the EXAFS
phase). The thermal damping is stronger for the outer shells.

3. EXAFS and dynamical properties

We want now to see how the EXAFS parameters, say the cumulants Ci(T ) and C∗
i (T ) of

the effective and real distributions, are connected to vibrational properties of crystals. The
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Figure 3. Temperature dependences of the first three cumulants Ci of the first coordination shell
of germanium, determined from EXAFS analysis taking the 10 K spectrum as reference [13]. The
usual Einstein-like behaviour of C2 is evident (b). Low-temperature quantum deviations from the
classical behaviours, equations (23)–(25), are noticeable also for C1 (a) and C3 (c).

cumulants describe average properties of the distributions of distances:

C∗
1 (T ) = 〈r〉 C∗

2 (T ) = 〈(r − 〈r〉)2〉 C∗
3 (T ) = 〈(r − 〈r〉)3〉. (13)

The distance r in turn depends on the instantaneous atomic thermal displacements. Let us
consider the absorber atom and one of its neighbours, labelled 0 and j , respectively. Let R be
the equilibrium distance, r the instantaneous distance, and �u = uj − u0 the instantaneous
relative displacement:

r = R + �u. (14)

In the following we will consider the projections of the relative displacement �u parallel and
perpendicular to the interatomic bond, defined by

�u‖ = R̂ · �u (�u⊥)2 = (�u)2 − (�u‖)2. (15)

From (14) and (15) it is straightforward to derive the approximate expression for the scalar
distance r:

r � R + �u‖ + (�u⊥)2/2R − [�u‖(�u⊥)2]/2R2. (16)

3.1. Harmonic approximation

In the harmonic approximation for the crystal potential, the averages (13) are connected to the
atomic displacements by simple first-order relations. Starting from equation (16) it is easy to
show that

C∗
1 � R + 〈(�u⊥)2〉/2R (17)

C∗
2 � 〈

(�u‖)2
〉
. (18)

The third cumulant C∗
3 is generally negligible for a harmonic crystal potential, although the

distribution ρ(r) is not strictly symmetrical. As a consequence, the standard formula (11) can
be used.

According to equation (18), the second cumulant, which measures the exponential thermal
damping of the EXAFS signal, directly gives the quantity 〈(�u‖)2〉, generally referred to as
the mean square relative displacement (MSRD) and indicated by σ 2 [5]. We will consider the
MSRD further in section 4.

Let us now turn to equation (17). The mean value C∗
1 of the real distribution is larger than

the equilibrium distance R, owing to the relative thermal motion perpendicular to the bond
direction [18, 20]. Since 〈(�u⊥)2〉 grows with temperature, it generates an apparent thermal
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expansion also for an ideally harmonic crystal. By comparing equations (12) and (17), one
can see that the apparent expansion is of the same order as the difference between C1 and C∗

1 ,
but of opposite sign, so in many cases C1 can be confused with R within the experimental
uncertainties. However, when the experimental accuracy is high enough, the effects of 〈(�u‖)2〉
in (12) and 〈(�u⊥)2〉 in (17) should be separately taken into account (figure 5—see later). The
MSRD 〈(�u‖)2〉 can be obtained from experimental EXAFS spectra, through equation (18).
The quantity 〈(�u⊥)2〉 has instead to be calculated independently, since its connection with
〈(�u‖)2〉 depends on the particular crystal structure [21]. As a consequence, an accurate
determination of the interatomic distance R and of the thermal expansion cannot be made
solely from an EXAFS experiment. Conversely, the comparison of the EXAFS C∗

1 with R

(known from other techniques) allows one to obtain the quantity 〈(�u⊥)2〉. We will come
back to this topic in section 5.

In the harmonic approximation the instantaneous displacement of the j th atom within the
'th unit cell can be expressed as [22]

u'j (t) = (Nmj)
−1/2

∑
q,λ

Q(q, λ, t)wj (q, λ) exp(iq · r'j ) (19)

where N is the number of unit cells and mj and r'j are the mass and the vector position of the
atom, respectively. Q(q, λ, t) is the (complex) normal coordinate of mode (q, λ) and wj (q, λ)

are normalized eigenvectors of the dynamical matrix

Djα,j ′β(q) = (mjmj ′)1/2
∑
'′

,'jα,'′j ′β exp
[−iq · (r'j − r'′j ′)

]
(20)

where the , are the force constants and α, β label the x-, y-, z-coordinates.
Once the dynamical matrix and its eigenvalues and eigenvectors have been calculated, the

quantities 〈(�u‖)2〉 and 〈(�u⊥)2〉 can be evaluated and compared with the values obtained
from the EXAFS.

3.2. Anharmonicity

The sensitivity of EXAFS to anharmonicity depends on the relatively high values of the
exchanged momentum 2k: the weight of the cumulant of order n in (10) grows with the nth
power of k. After the first pioneering works on CuBr [23] and AgI [17], it became clear that
anharmonicity could not be neglected even for systems like germanium or GaAs [24, 25].
Several theoretical schemes of different degrees of complexity and generality have been
developed for the interpretation of anharmonicity effects in EXAFS [11, 23, 26, 27]. Here we
will rely on a semi-classical approach which is frequently used in phenomenological analyses.

The distribution ρ(r) of interatomic distances is connected to an effective pair potential
Ve [28]. In the classical approximation, for sufficiently high temperatures,

ρ(r, T ) = exp[−βVe(r)]

{∫
exp[−βVe(r)] dr

}−1

(21)

where β = 1/kBT . The potential Ve can be expanded as

Ve(u) = au2/2 + bu3 + cu4 + · · · (22)

where u is the variation of interatomic distance with respect to the potential minimum.
In the classical approximation the first four cumulants of the distribution ρ(r, T ) can be

related to the force constants a, b, c, . . . of the effective potential Ve by [23, 29]

δC∗
1 (T ) = −(3b/a2)kBT + · · · (23)

C∗
2 (T ) = (kBT /a) + (kBT /a)

2
[
(6b/a)2 − (12c/a)

]
+ · · · (24)
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C∗
3 (T ) = −(kBT /a)

2(6b/a) + · · · (25)

C∗
4 (T ) = (kBT /a)

3
[
(108b2/a2) − (24c/a)

]
+ · · · . (26)

The linear growth of δC∗
1 with temperature in (23) depends on the potential asymmetry, and is

reproduced, to first order, also by the ratio C∗
3/2C∗

2 . Always to first order and in the classical
approximation, C∗

2 grows linearly with T (harmonic approximation), while C∗
3 and C∗

4 go like
T 2 and T 3, respectively. Equation (24) shows also the second-order anharmonic correction
to C∗

2 .
Low-temperature quantum deviations of C∗

2 from the classical behaviour (24) are never
negligible (figure 3(b)), and the linear dependence on temperature has to be replaced by the
Bose–Einstein population factor (see equation (29) below). Quantum corrections to higher-
order cumulants have also been calculated [11, 26], and can sometimes be non-negligible
(figure 3(c)) [13]. Apart from the classical approximation, equations (23)–(26) rely also on the
hypothesis that the potential Ve is independent of temperature, both in shape and in position.
This hypothesis is not necessarily fulfilled: the effective one-dimensional potential Ve depends
on the statistically averaged behaviour of all the atoms in the crystal, and can be temperature
dependent.

4. Mean square relative displacement

Let us now focus our attention on the mean square relative displacement (MSRD). Starting
from equation (15), the MSRD of the absorber–back-scatterer pair of atoms can be expressed
as

〈(�u‖)2〉 = 〈(R̂ · �u)2〉 = 〈(R̂ · uj )
2〉 + 〈(R̂ · u0)

2〉 − 2〈(R̂ · uj )(R̂ · u0)〉. (27)

The first two terms on the right-hand side represent the mean square displacements (MSDs)
of absorber and back-scatterer atoms, respectively, while the last term is the displacement
correlation function (DCF) [5].

4.1. MSRD in the harmonic approximation

Substituting in (27) the atomic displacements (19), one obtains

〈(�u‖)2〉 = 1

Nµ

∑
q,λ

〈|Q(q, λ, t)|2〉
∣∣∣∣R̂ ·

(
wj (q, λ) exp(iq · R)

(mj/µ)1/2
− w0(q, λ)

(m0/µ)1/2

)∣∣∣∣
2

(28)

where m0 and mj are the masses of the absorber and back-scatterer atoms, respectively, µ is
their reduced mass, and the temperature dependence is given by

〈|Q(q, λ, t)|2〉 = [h̄/2ω(q, λ)] coth[h̄ω(q, λ)/2kBT ]. (29)

When the square of the binomial expression inside the modulus bars in equation (28) is
calculated, the two direct terms correspond to the uncorrelated MSDs of absorber and back-
scatterer atoms, the cross product to the DCF.

The sensitivity of EXAFS to correlation can be better appreciated by the comparison
with diffraction [30]. If we consider only a single pair of atoms, the Debye–Waller factor of
diffraction exp[−G2〈(Ĝ · �u)2〉/2] has the same expression as the EXAFS Debye–Waller
factor exp[−2k2〈(R̂ · �u)2〉]. G is the scattering vector of diffraction; the corresponding
scattering vector in EXAFS has magnitude 2k, and is directed along the bond direction R̂. The
significant difference between EXAFS and diffraction appears when the entire crystal is taken
into account. The EXAFS of one coordination shell is the sum of the contributions of a few
atomic pairs, while a diffraction pattern is a sum over all the atomic pairs within the crystal.
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As a consequence of long-range averaging, in diffraction the effect of short-range correlations
is dispersed into the thermal diffuse scattering, and the Debye–Waller factor monitors only
the uncorrelated MSD. By subtracting from the EXAFS MSRD the sum of the MSDs of
absorber and back-scatterer atoms, measured by means of diffraction, one gets the value of the
correlation function DCF.

For monatomic Bravais crystals, where only acoustic modes are present, the correlation
depends only on the phonon wavevectors through the dot product q ·R in (28). In non-Bravais
crystals the phase relationships between eigenvectors add a significant, if not predominant,
contribution to correlation. The correlation effect is stronger between nearest neighbours, say
for the first coordination shell. When going from the first to the outer coordination shells, the
correlation progressively decreases, and the EXAFS MSRD increases and tends to the sum of
the MSDs of absorber and back-scatterer atoms.

The calculation of the MSRD (28) requires the knowledge of eigenvalues and eigenvectors
of the dynamical matrix. Different dynamical models, though giving the same dispersion
curves, can yield different eigenvectors [31]. The reproduction of the MSRD, in view of
its peculiar sensitivity to correlation, represents an important independent test of dynamical
calculations.

The effects of correlation are well illustrated by the case of β-AgI (figure 4, left). The
thermal motion of silver ions, measured by means of diffraction, is more intense than that
of iodine ions. As a consequence, the uncorrelated MSD of the I–Ag pair is larger than
that of the I–I pair. Conversely, the MSRD of the first-shell I–Ag pair is smaller than that
of the second-shell I–I pair, owing to a much stronger correlation effect. The dynamics of
AgI is strongly characterized by the presence of very low-frequency optical modes. The
temperature dependence of the MSRDs could be reproduced through equation (28) with
eigenvectors calculated at the centre of the first Brillouin zone [32]. The difference in
correlation between first and second shells is largely due to the different projections along
the bond directions of the atomic displacements induced by the low-frequency optical modes.
However, when the entire Brillouin zone was sampled, using eigenfrequencies and eigenvectors
calculated through a valence shell model which satisfactorily reproduced the phonon dispersion
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Figure 4. Left panel: correlation effects in the MSRD of β-AgI, taking iodine as the absorber atom.
Open squares and triangles relate to the first-shell I–Ag and second-shell I–I MSRDs, respectively;
full squares and triangles show the uncorrelated MSDs of the I–Ag and I–I pairs, respectively. Right
panel: anharmonic effects on the MSRDs of the first three coordination shells in germanium (in
order, (a), (b), and (c)). The circles show experimental values, the continuous line the best-fitting
equation (31), the dashed line the corresponding harmonic contribution.
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curves [33], the strong correlation effects experimentally found for the MSRD could not be
reproduced at all.

As was pointed out in section 2, from the EXAFS analysis one often gets only relative
values of the second cumulant, �C2(T ) = C2(T ) − C2(T0). Absolute values of the MSRD,
such as those shown in figure 4, left, are generally recovered by fitting the temperature
dependence of �C2 to a phenomenological Einstein correlated model:

σ 2(ωE, T ) = (h̄/2µωE) coth(h̄ωE/2kT ) (30)

depending on one parameter, the frequency ωE [9]. In general the Einstein frequency ωE

does not correspond to defined peaks of the vibrational density of states. It can anyway be
considered a measure of the effective bond-stretching force constant: f = µω2

E . Its value can
be utilized to estimate and compare the strength of different bonds.

4.2. Anharmonic contributions to the MSRD

Anharmonicity can affect the MSRD and modify its high-temperature behaviour, according
to the second term in equation (24). An approximate expression for the MSRD, taking into
account both low-temperature quantum effects and high-temperature anharmonicity, can be
obtained from (24) by substituting an Einstein model (30) for the first linear term, with
a = µω2

E , and expressing the second term as a function of the cumulants C3 and C4:

C2(T ) = σ 2(ωE, T ) − 1

2

(
kBT

µω2
E

)2

C2
3 (T ) +

1

2

(
kBT

µω2
E

)
C4(T ). (31)

If the third and fourth cumulants are known with good accuracy from experimental data,
equation (31) contains only one free parameter ωE and can be fitted to the slope of the
experimental points �C2(T ), allowing the separation of the harmonic MSRD from the first-
order anharmonic contribution.

The analysis based on equation (31) was applied to the MSRDs of the first three co-
ordination shells of germanium [24]. The results are summarized in figure 4, right, where also
the harmonic contribution σ 2(ωE, T ) is shown (dashed lines). The anharmonic expression
(31) gave a better fit to the temperature dependence of the experimental values than a simple
Einstein model (30), in particular for the outer shells. The soundness of this phenomenological
procedure was confirmed by the comparison with ab initio calculations [34] made in the
harmonic approximation and based on a perturbative approach to the density functional theory
[35]. The theoretical values were in very good agreement both in slope and absolute value with
the harmonic part of equation (31) [34]. The agreement would have been significantly worse,
at least for the second and third shells, had only a harmonic model been fitted to experimental
values.

5. Thermal expansion

The high sensitivity to anharmonicity suggests that EXAFS could be used to study local thermal
expansion; this possibility, combined with the selectivity as regards atomic species, could
be particularly useful for multicomponent non-crystalline systems or for low-concentration
impurities. To achieve a better understanding of the strengths and limitations of EXAFS
as a probe of thermal expansion, high accuracy measurements on crystals of known
thermodynamical properties are being carried out.

According to the approximate classical equations (23)–(25), the thermal expansion could
be measured equivalently by either δC∗

1 or C∗
3/2C∗

2 . This corresponds to saying that the
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average position C∗
1 of the distance distribution is completely determined by the asymmetry

of the effective pair potential Ve. Actually, according to equation (17), C∗
1 depends also on

the apparent thermal expansion induced by vibrations normal to the bond. Measurements on
several crystals, Ge [13], AgI [18], and CdSe [28], have shown that C∗

1 always overestimates
the real thermal expansion. The results for germanium are shown in figure 5.
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Figure 5. EXAFS and thermal expansion in germanium. The continuous line shows the thermal
expansion expected for the nearest-neighbour distance [36]; squares and circles give the temperature
variations of the first cumulants C1 and C∗

1 of the effective and real distributions, respectively.

In the case of germanium, the high quality of the experimental data has allowed for the
first time the inversion of equation (17) to recover the quantity 〈(�u⊥)2〉 as a function of
temperature [13]. The reliability of the procedure is confirmed by the remarkable consistency
between the ratio γ = 〈(�u⊥)2〉/〈(�u‖)2〉 obtained from the EXAFS of germanium and the
same ratio calculated for silicon on the basis of an adiabatic bond charge model [21].

Let us now consider the alternative possibility for measuring thermal expansion, say the
ratio C∗

3/2C∗
2 . In the case of germanium, if low-temperature quantum effects in C∗

3 are taken
into account according to the method suggested in [26], the ratio C3/2C2 reproduces well the
real thermal expansion. However, in the case of CdSe and AgI the ratios C3/2C2 substantially
overestimate the real thermal expansion [18, 28], which is actually very weak for CdSe and
almost null for AgI. For these two crystals, then, the thermal expansion cannot be obtained
either from the first or from the third cumulant.

The generally observed failure of the equivalence between δC∗
1 andC∗

3/2C∗
2 , postulated by

equations (23)–(25), can be explained by assuming that the minimum position of the effective
potential is temperature dependent. The growth of the mean value C∗

1 with temperature is then
a joint effect of the shift of the minimum position and the asymmetry of the potential. The
results obtained for germanium suggest that the asymmetry of the effective potential reflects
the anharmonicity of the crystal potential, so the third cumulant actually gives the thermal
expansion. The thermal vibrations normal to the bond direction produce instead a positive
shift of the minimum of the effective potential, which causes the apparent thermal expansion
of the first cumulant, without affecting the shape of the potential. The situation is more
complicated for CdSe and AgI. Here the minimum of the effective potentialVe exhibits a strong
negative shift with temperature, probably connected with the anomalous thermal expansion
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of these compounds. In the absence of an independent knowledge of the term 〈(�u⊥)2〉, it is
impossible to disentangle the three effects (downward shift of the potential minimum, thermal
vibrations normal to the bond direction, anharmonicity) from the measurements of only two
parameters (first and third cumulant).

6. Conclusions

EXAFS is particularly sensitive to the correlation of vibrational motion of neighbouring atoms,
and can be used to test and compare the phase relationships between eigenvectors of different
dynamical models. The quantity traditionally extracted from EXAFS is the MSRD parallel
to the bond direction 〈(�u‖)2〉. Recently more attention has been paid to the effects of
anharmonicity: not only has a better agreement with theoretical calculations of 〈(�u‖)2〉
been obtained by subtracting anharmonic contributions from experimental data, but also the
possibility has been demonstrated of obtaining the correlation term 〈(�u⊥)2〉 perpendicular to
the bond direction.

Thermal expansion studies on crystals have shown that the effective EXAFS pair potential
is temperature dependent. While for germanium this dependence is due only to the term
〈(�u⊥)2〉, in other cases, like those of AgI and CdSe, the situation appears more complex
and has not yet found an explanation. It is however reasonable to assume that the comparison
between local properties sampled by EXAFS and average thermodynamic quantities could
shed new light on peculiar phenomena, like local lattice distortions, opening new perspectives
for EXAFS in crystals.

Once the subtle effects of correlation and anharmonicity are well understood for crystals,
EXAFS could become an efficient probe not only of structure, but also of local dynamical
properties of complex and amorphous systems.
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